skip to main content


Search for: All records

Creators/Authors contains: "Wei‐Kocsis, Jin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Contribution: A novel proactive and collaborative learning paradigm was proposed to engage learners with different backgrounds and enable effective retention and transfer of the multidisciplinary artificial intelligence (AI)-cybersecurity knowledge. Specifically, the proposed learning paradigm contains: 1) an immersive learning environment to motivate the students for exploring AI/machine learning (ML) development in the context of real-world cybersecurity scenarios by constructing learning models with tangible objects and 2) a proactive education paradigm designed with the use of collaborative learning activities based on game-based learning and social constructivism. Background: Increasing evidence shows that AI techniques can be manipulated, evaded, and misled, which can result in new and profound security implications. There is an education and training gap to foster a qualified cyber-workforce that understands the usefulness, limitations, and best practices of AI technologies in the cybersecurity domain. Efforts have been made to incorporate a comprehensive curriculum to meet the demand. There still remain essential challenges for effectively educating students on the interaction of AI and cybersecurity. Intended Outcomes: A novel proactive and collaborative learning paradigm is proposed to educate and train a qualified cyber-workforce in this new era where security breaches, privacy violations, and AI have become commonplace. Application Design: The development of this learning paradigm is grounded in the pedagogical approaches of technology-mediated learning and social constructivism. Findings: Although the research work is still ongoing, the prototype learning paradigm has shown encouraging results in promoting the learners’ engagement in applied AI learning. 
    more » « less
    Free, publicly-accessible full text available December 21, 2024
  2. This Innovative Practice Work-in-Progress paper presents a virtual, proactive, and collaborative learning paradigm that can engage learners with different backgrounds and enable effective retention and transfer of the multidisciplinary AI-cybersecurity knowledge. While progress has been made to better understand the trustworthiness and security of artificial intelligence (AI) techniques, little has been done to translate this knowledge to education and training. There is a critical need to foster a qualified cybersecurity workforce that understands the usefulness, limitations, and best practices of AI technologies in the cybersecurity domain. To address this import issue, in our proposed learning paradigm, we leverage multidisciplinary expertise in cybersecurity, AI, and statistics to systematically investigate two cohesive research and education goals. First, we develop an immersive learning environment that motivates the students to explore AI/machine learning (ML) development in the context of real-world cybersecurity scenarios by constructing learning models with tangible objects. Second, we design a proactive education paradigm with the use of hackathon activities based on game-based learning, lifelong learning, and social constructivism. The proposed paradigm will benefit a wide range of learners, especially underrepresented students. It will also help the general public understand the security implications of AI. In this paper, we describe our proposed learning paradigm and present our current progress of this ongoing research work. In the current stage, we focus on the first research and education goal and have been leveraging cost-effective Minecraft platform to develop an immersive learning environment where the learners are able to investigate the insights of the emerging AI/ML concepts by constructing related learning modules via interacting with tangible AI/ML building blocks. 
    more » « less
  3. Computer-aided design (CAD) programs are essential to engineering as they allow for better designs through low-cost iterations. While CAD programs are typically taught to undergraduate students as a job skill, such software can also help students learn engineering concepts. A current limitation of CAD programs (even those that are specifically designed for educational purposes) is that they are not capable of providing automated real-time help to students. To encourage CAD programs to build in assistance to students, we used data generated from students using a free, open-source CAD software called Aladdin to demonstrate how student data combined with machine learning techniques can predict how well a particular student will perform in a design task. We challenged students to design a house that consumed zero net energy as part of an introductory engineering technology undergraduate course. Using data from 128 students, along with the scikit-learn Python machine learning library, we tested our models using both total counts of design actions and sequences of design actions as inputs. We found that our models using early design sequence actions are particularly valuable for prediction. Our logistic regression model achieved a >60% chance of predicting if a student would succeed in designing a zero net energy house. Our results suggest that it would be feasible for Aladdin to provide useful feedback to students when they are approximately halfway through their design. Further improvements to these models could lead to earlier predictions and thus provide students feedback sooner to enhance their learning. 
    more » « less
  4. null (Ed.)